761 lines
20 KiB
C
761 lines
20 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Based on arch/arm/kernel/process.c
|
||
|
*
|
||
|
* Original Copyright (C) 1995 Linus Torvalds
|
||
|
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
|
||
|
* Copyright (C) 2012 ARM Ltd.
|
||
|
*/
|
||
|
#include <linux/compat.h>
|
||
|
#include <linux/efi.h>
|
||
|
#include <linux/elf.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/sched/debug.h>
|
||
|
#include <linux/sched/task.h>
|
||
|
#include <linux/sched/task_stack.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/mman.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/nospec.h>
|
||
|
#include <linux/stddef.h>
|
||
|
#include <linux/sysctl.h>
|
||
|
#include <linux/unistd.h>
|
||
|
#include <linux/user.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/reboot.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/elfcore.h>
|
||
|
#include <linux/pm.h>
|
||
|
#include <linux/tick.h>
|
||
|
#include <linux/utsname.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/hw_breakpoint.h>
|
||
|
#include <linux/personality.h>
|
||
|
#include <linux/notifier.h>
|
||
|
#include <trace/events/power.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/thread_info.h>
|
||
|
#include <linux/prctl.h>
|
||
|
#include <linux/stacktrace.h>
|
||
|
|
||
|
#include <asm/alternative.h>
|
||
|
#include <asm/compat.h>
|
||
|
#include <asm/cpufeature.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/exec.h>
|
||
|
#include <asm/fpsimd.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/mte.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/pointer_auth.h>
|
||
|
#include <asm/stacktrace.h>
|
||
|
#include <asm/switch_to.h>
|
||
|
#include <asm/system_misc.h>
|
||
|
|
||
|
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
|
||
|
#include <linux/stackprotector.h>
|
||
|
unsigned long __stack_chk_guard __ro_after_init;
|
||
|
EXPORT_SYMBOL(__stack_chk_guard);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Function pointers to optional machine specific functions
|
||
|
*/
|
||
|
void (*pm_power_off)(void);
|
||
|
EXPORT_SYMBOL_GPL(pm_power_off);
|
||
|
|
||
|
#ifdef CONFIG_HOTPLUG_CPU
|
||
|
void arch_cpu_idle_dead(void)
|
||
|
{
|
||
|
cpu_die();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Called by kexec, immediately prior to machine_kexec().
|
||
|
*
|
||
|
* This must completely disable all secondary CPUs; simply causing those CPUs
|
||
|
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
|
||
|
* kexec'd kernel to use any and all RAM as it sees fit, without having to
|
||
|
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
|
||
|
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
|
||
|
*/
|
||
|
void machine_shutdown(void)
|
||
|
{
|
||
|
smp_shutdown_nonboot_cpus(reboot_cpu);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Halting simply requires that the secondary CPUs stop performing any
|
||
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
||
|
* achieves this.
|
||
|
*/
|
||
|
void machine_halt(void)
|
||
|
{
|
||
|
local_irq_disable();
|
||
|
smp_send_stop();
|
||
|
while (1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Power-off simply requires that the secondary CPUs stop performing any
|
||
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
||
|
* achieves this. When the system power is turned off, it will take all CPUs
|
||
|
* with it.
|
||
|
*/
|
||
|
void machine_power_off(void)
|
||
|
{
|
||
|
local_irq_disable();
|
||
|
smp_send_stop();
|
||
|
do_kernel_power_off();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Restart requires that the secondary CPUs stop performing any activity
|
||
|
* while the primary CPU resets the system. Systems with multiple CPUs must
|
||
|
* provide a HW restart implementation, to ensure that all CPUs reset at once.
|
||
|
* This is required so that any code running after reset on the primary CPU
|
||
|
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
|
||
|
* executing pre-reset code, and using RAM that the primary CPU's code wishes
|
||
|
* to use. Implementing such co-ordination would be essentially impossible.
|
||
|
*/
|
||
|
void machine_restart(char *cmd)
|
||
|
{
|
||
|
/* Disable interrupts first */
|
||
|
local_irq_disable();
|
||
|
smp_send_stop();
|
||
|
|
||
|
/*
|
||
|
* UpdateCapsule() depends on the system being reset via
|
||
|
* ResetSystem().
|
||
|
*/
|
||
|
if (efi_enabled(EFI_RUNTIME_SERVICES))
|
||
|
efi_reboot(reboot_mode, NULL);
|
||
|
|
||
|
/* Now call the architecture specific reboot code. */
|
||
|
do_kernel_restart(cmd);
|
||
|
|
||
|
/*
|
||
|
* Whoops - the architecture was unable to reboot.
|
||
|
*/
|
||
|
printk("Reboot failed -- System halted\n");
|
||
|
while (1);
|
||
|
}
|
||
|
|
||
|
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
|
||
|
static const char *const btypes[] = {
|
||
|
bstr(NONE, "--"),
|
||
|
bstr( JC, "jc"),
|
||
|
bstr( C, "-c"),
|
||
|
bstr( J , "j-")
|
||
|
};
|
||
|
#undef bstr
|
||
|
|
||
|
static void print_pstate(struct pt_regs *regs)
|
||
|
{
|
||
|
u64 pstate = regs->pstate;
|
||
|
|
||
|
if (compat_user_mode(regs)) {
|
||
|
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
|
||
|
pstate,
|
||
|
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
|
||
|
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
|
||
|
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
|
||
|
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
|
||
|
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
|
||
|
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
|
||
|
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
|
||
|
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
|
||
|
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
|
||
|
pstate & PSR_AA32_F_BIT ? 'F' : 'f',
|
||
|
pstate & PSR_AA32_DIT_BIT ? '+' : '-',
|
||
|
pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
|
||
|
} else {
|
||
|
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
|
||
|
PSR_BTYPE_SHIFT];
|
||
|
|
||
|
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
|
||
|
pstate,
|
||
|
pstate & PSR_N_BIT ? 'N' : 'n',
|
||
|
pstate & PSR_Z_BIT ? 'Z' : 'z',
|
||
|
pstate & PSR_C_BIT ? 'C' : 'c',
|
||
|
pstate & PSR_V_BIT ? 'V' : 'v',
|
||
|
pstate & PSR_D_BIT ? 'D' : 'd',
|
||
|
pstate & PSR_A_BIT ? 'A' : 'a',
|
||
|
pstate & PSR_I_BIT ? 'I' : 'i',
|
||
|
pstate & PSR_F_BIT ? 'F' : 'f',
|
||
|
pstate & PSR_PAN_BIT ? '+' : '-',
|
||
|
pstate & PSR_UAO_BIT ? '+' : '-',
|
||
|
pstate & PSR_TCO_BIT ? '+' : '-',
|
||
|
pstate & PSR_DIT_BIT ? '+' : '-',
|
||
|
pstate & PSR_SSBS_BIT ? '+' : '-',
|
||
|
btype_str);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __show_regs(struct pt_regs *regs)
|
||
|
{
|
||
|
int i, top_reg;
|
||
|
u64 lr, sp;
|
||
|
|
||
|
if (compat_user_mode(regs)) {
|
||
|
lr = regs->compat_lr;
|
||
|
sp = regs->compat_sp;
|
||
|
top_reg = 12;
|
||
|
} else {
|
||
|
lr = regs->regs[30];
|
||
|
sp = regs->sp;
|
||
|
top_reg = 29;
|
||
|
}
|
||
|
|
||
|
show_regs_print_info(KERN_DEFAULT);
|
||
|
print_pstate(regs);
|
||
|
|
||
|
if (!user_mode(regs)) {
|
||
|
printk("pc : %pS\n", (void *)regs->pc);
|
||
|
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
|
||
|
} else {
|
||
|
printk("pc : %016llx\n", regs->pc);
|
||
|
printk("lr : %016llx\n", lr);
|
||
|
}
|
||
|
|
||
|
printk("sp : %016llx\n", sp);
|
||
|
|
||
|
if (system_uses_irq_prio_masking())
|
||
|
printk("pmr_save: %08llx\n", regs->pmr_save);
|
||
|
|
||
|
i = top_reg;
|
||
|
|
||
|
while (i >= 0) {
|
||
|
printk("x%-2d: %016llx", i, regs->regs[i]);
|
||
|
|
||
|
while (i-- % 3)
|
||
|
pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
|
||
|
|
||
|
pr_cont("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void show_regs(struct pt_regs *regs)
|
||
|
{
|
||
|
__show_regs(regs);
|
||
|
dump_backtrace(regs, NULL, KERN_DEFAULT);
|
||
|
}
|
||
|
|
||
|
static void tls_thread_flush(void)
|
||
|
{
|
||
|
write_sysreg(0, tpidr_el0);
|
||
|
if (system_supports_tpidr2())
|
||
|
write_sysreg_s(0, SYS_TPIDR2_EL0);
|
||
|
|
||
|
if (is_compat_task()) {
|
||
|
current->thread.uw.tp_value = 0;
|
||
|
|
||
|
/*
|
||
|
* We need to ensure ordering between the shadow state and the
|
||
|
* hardware state, so that we don't corrupt the hardware state
|
||
|
* with a stale shadow state during context switch.
|
||
|
*/
|
||
|
barrier();
|
||
|
write_sysreg(0, tpidrro_el0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void flush_tagged_addr_state(void)
|
||
|
{
|
||
|
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
|
||
|
clear_thread_flag(TIF_TAGGED_ADDR);
|
||
|
}
|
||
|
|
||
|
void flush_thread(void)
|
||
|
{
|
||
|
fpsimd_flush_thread();
|
||
|
tls_thread_flush();
|
||
|
flush_ptrace_hw_breakpoint(current);
|
||
|
flush_tagged_addr_state();
|
||
|
}
|
||
|
|
||
|
void arch_release_task_struct(struct task_struct *tsk)
|
||
|
{
|
||
|
fpsimd_release_task(tsk);
|
||
|
}
|
||
|
|
||
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
||
|
{
|
||
|
if (current->mm)
|
||
|
fpsimd_preserve_current_state();
|
||
|
*dst = *src;
|
||
|
|
||
|
/* We rely on the above assignment to initialize dst's thread_flags: */
|
||
|
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
|
||
|
|
||
|
/*
|
||
|
* Detach src's sve_state (if any) from dst so that it does not
|
||
|
* get erroneously used or freed prematurely. dst's copies
|
||
|
* will be allocated on demand later on if dst uses SVE.
|
||
|
* For consistency, also clear TIF_SVE here: this could be done
|
||
|
* later in copy_process(), but to avoid tripping up future
|
||
|
* maintainers it is best not to leave TIF flags and buffers in
|
||
|
* an inconsistent state, even temporarily.
|
||
|
*/
|
||
|
dst->thread.sve_state = NULL;
|
||
|
clear_tsk_thread_flag(dst, TIF_SVE);
|
||
|
|
||
|
/*
|
||
|
* In the unlikely event that we create a new thread with ZA
|
||
|
* enabled we should retain the ZA and ZT state so duplicate
|
||
|
* it here. This may be shortly freed if we exec() or if
|
||
|
* CLONE_SETTLS but it's simpler to do it here. To avoid
|
||
|
* confusing the rest of the code ensure that we have a
|
||
|
* sve_state allocated whenever sme_state is allocated.
|
||
|
*/
|
||
|
if (thread_za_enabled(&src->thread)) {
|
||
|
dst->thread.sve_state = kzalloc(sve_state_size(src),
|
||
|
GFP_KERNEL);
|
||
|
if (!dst->thread.sve_state)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
dst->thread.sme_state = kmemdup(src->thread.sme_state,
|
||
|
sme_state_size(src),
|
||
|
GFP_KERNEL);
|
||
|
if (!dst->thread.sme_state) {
|
||
|
kfree(dst->thread.sve_state);
|
||
|
dst->thread.sve_state = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
} else {
|
||
|
dst->thread.sme_state = NULL;
|
||
|
clear_tsk_thread_flag(dst, TIF_SME);
|
||
|
}
|
||
|
|
||
|
dst->thread.fp_type = FP_STATE_FPSIMD;
|
||
|
|
||
|
/* clear any pending asynchronous tag fault raised by the parent */
|
||
|
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
|
||
|
|
||
|
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
|
||
|
{
|
||
|
unsigned long clone_flags = args->flags;
|
||
|
unsigned long stack_start = args->stack;
|
||
|
unsigned long tls = args->tls;
|
||
|
struct pt_regs *childregs = task_pt_regs(p);
|
||
|
|
||
|
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
|
||
|
|
||
|
/*
|
||
|
* In case p was allocated the same task_struct pointer as some
|
||
|
* other recently-exited task, make sure p is disassociated from
|
||
|
* any cpu that may have run that now-exited task recently.
|
||
|
* Otherwise we could erroneously skip reloading the FPSIMD
|
||
|
* registers for p.
|
||
|
*/
|
||
|
fpsimd_flush_task_state(p);
|
||
|
|
||
|
ptrauth_thread_init_kernel(p);
|
||
|
|
||
|
if (likely(!args->fn)) {
|
||
|
*childregs = *current_pt_regs();
|
||
|
childregs->regs[0] = 0;
|
||
|
|
||
|
/*
|
||
|
* Read the current TLS pointer from tpidr_el0 as it may be
|
||
|
* out-of-sync with the saved value.
|
||
|
*/
|
||
|
*task_user_tls(p) = read_sysreg(tpidr_el0);
|
||
|
if (system_supports_tpidr2())
|
||
|
p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
||
|
|
||
|
if (stack_start) {
|
||
|
if (is_compat_thread(task_thread_info(p)))
|
||
|
childregs->compat_sp = stack_start;
|
||
|
else
|
||
|
childregs->sp = stack_start;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If a TLS pointer was passed to clone, use it for the new
|
||
|
* thread. We also reset TPIDR2 if it's in use.
|
||
|
*/
|
||
|
if (clone_flags & CLONE_SETTLS) {
|
||
|
p->thread.uw.tp_value = tls;
|
||
|
p->thread.tpidr2_el0 = 0;
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* A kthread has no context to ERET to, so ensure any buggy
|
||
|
* ERET is treated as an illegal exception return.
|
||
|
*
|
||
|
* When a user task is created from a kthread, childregs will
|
||
|
* be initialized by start_thread() or start_compat_thread().
|
||
|
*/
|
||
|
memset(childregs, 0, sizeof(struct pt_regs));
|
||
|
childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
|
||
|
|
||
|
p->thread.cpu_context.x19 = (unsigned long)args->fn;
|
||
|
p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
|
||
|
}
|
||
|
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
|
||
|
p->thread.cpu_context.sp = (unsigned long)childregs;
|
||
|
/*
|
||
|
* For the benefit of the unwinder, set up childregs->stackframe
|
||
|
* as the final frame for the new task.
|
||
|
*/
|
||
|
p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
|
||
|
|
||
|
ptrace_hw_copy_thread(p);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void tls_preserve_current_state(void)
|
||
|
{
|
||
|
*task_user_tls(current) = read_sysreg(tpidr_el0);
|
||
|
if (system_supports_tpidr2() && !is_compat_task())
|
||
|
current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
||
|
}
|
||
|
|
||
|
static void tls_thread_switch(struct task_struct *next)
|
||
|
{
|
||
|
tls_preserve_current_state();
|
||
|
|
||
|
if (is_compat_thread(task_thread_info(next)))
|
||
|
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
|
||
|
else if (!arm64_kernel_unmapped_at_el0())
|
||
|
write_sysreg(0, tpidrro_el0);
|
||
|
|
||
|
write_sysreg(*task_user_tls(next), tpidr_el0);
|
||
|
if (system_supports_tpidr2())
|
||
|
write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Force SSBS state on context-switch, since it may be lost after migrating
|
||
|
* from a CPU which treats the bit as RES0 in a heterogeneous system.
|
||
|
*/
|
||
|
static void ssbs_thread_switch(struct task_struct *next)
|
||
|
{
|
||
|
/*
|
||
|
* Nothing to do for kernel threads, but 'regs' may be junk
|
||
|
* (e.g. idle task) so check the flags and bail early.
|
||
|
*/
|
||
|
if (unlikely(next->flags & PF_KTHREAD))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* If all CPUs implement the SSBS extension, then we just need to
|
||
|
* context-switch the PSTATE field.
|
||
|
*/
|
||
|
if (cpus_have_const_cap(ARM64_SSBS))
|
||
|
return;
|
||
|
|
||
|
spectre_v4_enable_task_mitigation(next);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
|
||
|
* shadow copy so that we can restore this upon entry from userspace.
|
||
|
*
|
||
|
* This is *only* for exception entry from EL0, and is not valid until we
|
||
|
* __switch_to() a user task.
|
||
|
*/
|
||
|
DEFINE_PER_CPU(struct task_struct *, __entry_task);
|
||
|
|
||
|
static void entry_task_switch(struct task_struct *next)
|
||
|
{
|
||
|
__this_cpu_write(__entry_task, next);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
|
||
|
* Ensure access is disabled when switching to a 32bit task, ensure
|
||
|
* access is enabled when switching to a 64bit task.
|
||
|
*/
|
||
|
static void erratum_1418040_thread_switch(struct task_struct *next)
|
||
|
{
|
||
|
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
|
||
|
!this_cpu_has_cap(ARM64_WORKAROUND_1418040))
|
||
|
return;
|
||
|
|
||
|
if (is_compat_thread(task_thread_info(next)))
|
||
|
sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
|
||
|
else
|
||
|
sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
|
||
|
}
|
||
|
|
||
|
static void erratum_1418040_new_exec(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
erratum_1418040_thread_switch(current);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
|
||
|
* this function must be called with preemption disabled and the update to
|
||
|
* sctlr_user must be made in the same preemption disabled block so that
|
||
|
* __switch_to() does not see the variable update before the SCTLR_EL1 one.
|
||
|
*/
|
||
|
void update_sctlr_el1(u64 sctlr)
|
||
|
{
|
||
|
/*
|
||
|
* EnIA must not be cleared while in the kernel as this is necessary for
|
||
|
* in-kernel PAC. It will be cleared on kernel exit if needed.
|
||
|
*/
|
||
|
sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
|
||
|
|
||
|
/* ISB required for the kernel uaccess routines when setting TCF0. */
|
||
|
isb();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Thread switching.
|
||
|
*/
|
||
|
__notrace_funcgraph __sched
|
||
|
struct task_struct *__switch_to(struct task_struct *prev,
|
||
|
struct task_struct *next)
|
||
|
{
|
||
|
struct task_struct *last;
|
||
|
|
||
|
fpsimd_thread_switch(next);
|
||
|
tls_thread_switch(next);
|
||
|
hw_breakpoint_thread_switch(next);
|
||
|
contextidr_thread_switch(next);
|
||
|
entry_task_switch(next);
|
||
|
ssbs_thread_switch(next);
|
||
|
erratum_1418040_thread_switch(next);
|
||
|
ptrauth_thread_switch_user(next);
|
||
|
|
||
|
/*
|
||
|
* Complete any pending TLB or cache maintenance on this CPU in case
|
||
|
* the thread migrates to a different CPU.
|
||
|
* This full barrier is also required by the membarrier system
|
||
|
* call.
|
||
|
*/
|
||
|
dsb(ish);
|
||
|
|
||
|
/*
|
||
|
* MTE thread switching must happen after the DSB above to ensure that
|
||
|
* any asynchronous tag check faults have been logged in the TFSR*_EL1
|
||
|
* registers.
|
||
|
*/
|
||
|
mte_thread_switch(next);
|
||
|
/* avoid expensive SCTLR_EL1 accesses if no change */
|
||
|
if (prev->thread.sctlr_user != next->thread.sctlr_user)
|
||
|
update_sctlr_el1(next->thread.sctlr_user);
|
||
|
|
||
|
/* the actual thread switch */
|
||
|
last = cpu_switch_to(prev, next);
|
||
|
|
||
|
return last;
|
||
|
}
|
||
|
|
||
|
struct wchan_info {
|
||
|
unsigned long pc;
|
||
|
int count;
|
||
|
};
|
||
|
|
||
|
static bool get_wchan_cb(void *arg, unsigned long pc)
|
||
|
{
|
||
|
struct wchan_info *wchan_info = arg;
|
||
|
|
||
|
if (!in_sched_functions(pc)) {
|
||
|
wchan_info->pc = pc;
|
||
|
return false;
|
||
|
}
|
||
|
return wchan_info->count++ < 16;
|
||
|
}
|
||
|
|
||
|
unsigned long __get_wchan(struct task_struct *p)
|
||
|
{
|
||
|
struct wchan_info wchan_info = {
|
||
|
.pc = 0,
|
||
|
.count = 0,
|
||
|
};
|
||
|
|
||
|
if (!try_get_task_stack(p))
|
||
|
return 0;
|
||
|
|
||
|
arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
|
||
|
|
||
|
put_task_stack(p);
|
||
|
|
||
|
return wchan_info.pc;
|
||
|
}
|
||
|
|
||
|
unsigned long arch_align_stack(unsigned long sp)
|
||
|
{
|
||
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
||
|
sp -= get_random_u32_below(PAGE_SIZE);
|
||
|
return sp & ~0xf;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
int compat_elf_check_arch(const struct elf32_hdr *hdr)
|
||
|
{
|
||
|
if (!system_supports_32bit_el0())
|
||
|
return false;
|
||
|
|
||
|
if ((hdr)->e_machine != EM_ARM)
|
||
|
return false;
|
||
|
|
||
|
if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* Prevent execve() of a 32-bit program from a deadline task
|
||
|
* if the restricted affinity mask would be inadmissible on an
|
||
|
* asymmetric system.
|
||
|
*/
|
||
|
return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
|
||
|
!dl_task_check_affinity(current, system_32bit_el0_cpumask());
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
|
||
|
*/
|
||
|
void arch_setup_new_exec(void)
|
||
|
{
|
||
|
unsigned long mmflags = 0;
|
||
|
|
||
|
if (is_compat_task()) {
|
||
|
mmflags = MMCF_AARCH32;
|
||
|
|
||
|
/*
|
||
|
* Restrict the CPU affinity mask for a 32-bit task so that
|
||
|
* it contains only 32-bit-capable CPUs.
|
||
|
*
|
||
|
* From the perspective of the task, this looks similar to
|
||
|
* what would happen if the 64-bit-only CPUs were hot-unplugged
|
||
|
* at the point of execve(), although we try a bit harder to
|
||
|
* honour the cpuset hierarchy.
|
||
|
*/
|
||
|
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
|
||
|
force_compatible_cpus_allowed_ptr(current);
|
||
|
} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
|
||
|
relax_compatible_cpus_allowed_ptr(current);
|
||
|
}
|
||
|
|
||
|
current->mm->context.flags = mmflags;
|
||
|
ptrauth_thread_init_user();
|
||
|
mte_thread_init_user();
|
||
|
erratum_1418040_new_exec();
|
||
|
|
||
|
if (task_spec_ssb_noexec(current)) {
|
||
|
arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
|
||
|
PR_SPEC_ENABLE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
|
||
|
/*
|
||
|
* Control the relaxed ABI allowing tagged user addresses into the kernel.
|
||
|
*/
|
||
|
static unsigned int tagged_addr_disabled;
|
||
|
|
||
|
long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
|
||
|
{
|
||
|
unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
|
||
|
struct thread_info *ti = task_thread_info(task);
|
||
|
|
||
|
if (is_compat_thread(ti))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (system_supports_mte())
|
||
|
valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
|
||
|
| PR_MTE_TAG_MASK;
|
||
|
|
||
|
if (arg & ~valid_mask)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* Do not allow the enabling of the tagged address ABI if globally
|
||
|
* disabled via sysctl abi.tagged_addr_disabled.
|
||
|
*/
|
||
|
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (set_mte_ctrl(task, arg) != 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
long get_tagged_addr_ctrl(struct task_struct *task)
|
||
|
{
|
||
|
long ret = 0;
|
||
|
struct thread_info *ti = task_thread_info(task);
|
||
|
|
||
|
if (is_compat_thread(ti))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
|
||
|
ret = PR_TAGGED_ADDR_ENABLE;
|
||
|
|
||
|
ret |= get_mte_ctrl(task);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Global sysctl to disable the tagged user addresses support. This control
|
||
|
* only prevents the tagged address ABI enabling via prctl() and does not
|
||
|
* disable it for tasks that already opted in to the relaxed ABI.
|
||
|
*/
|
||
|
|
||
|
static struct ctl_table tagged_addr_sysctl_table[] = {
|
||
|
{
|
||
|
.procname = "tagged_addr_disabled",
|
||
|
.mode = 0644,
|
||
|
.data = &tagged_addr_disabled,
|
||
|
.maxlen = sizeof(int),
|
||
|
.proc_handler = proc_dointvec_minmax,
|
||
|
.extra1 = SYSCTL_ZERO,
|
||
|
.extra2 = SYSCTL_ONE,
|
||
|
},
|
||
|
{ }
|
||
|
};
|
||
|
|
||
|
static int __init tagged_addr_init(void)
|
||
|
{
|
||
|
if (!register_sysctl("abi", tagged_addr_sysctl_table))
|
||
|
return -EINVAL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
core_initcall(tagged_addr_init);
|
||
|
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
|
||
|
|
||
|
#ifdef CONFIG_BINFMT_ELF
|
||
|
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
|
||
|
bool has_interp, bool is_interp)
|
||
|
{
|
||
|
/*
|
||
|
* For dynamically linked executables the interpreter is
|
||
|
* responsible for setting PROT_BTI on everything except
|
||
|
* itself.
|
||
|
*/
|
||
|
if (is_interp != has_interp)
|
||
|
return prot;
|
||
|
|
||
|
if (!(state->flags & ARM64_ELF_BTI))
|
||
|
return prot;
|
||
|
|
||
|
if (prot & PROT_EXEC)
|
||
|
prot |= PROT_BTI;
|
||
|
|
||
|
return prot;
|
||
|
}
|
||
|
#endif
|