linux-zen-server/arch/arm64/kernel/process.c

761 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/kernel/process.c
*
* Original Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/compat.h>
#include <linux/efi.h>
#include <linux/elf.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/nospec.h>
#include <linux/stddef.h>
#include <linux/sysctl.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <linux/pm.h>
#include <linux/tick.h>
#include <linux/utsname.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/personality.h>
#include <linux/notifier.h>
#include <trace/events/power.h>
#include <linux/percpu.h>
#include <linux/thread_info.h>
#include <linux/prctl.h>
#include <linux/stacktrace.h>
#include <asm/alternative.h>
#include <asm/compat.h>
#include <asm/cpufeature.h>
#include <asm/cacheflush.h>
#include <asm/exec.h>
#include <asm/fpsimd.h>
#include <asm/mmu_context.h>
#include <asm/mte.h>
#include <asm/processor.h>
#include <asm/pointer_auth.h>
#include <asm/stacktrace.h>
#include <asm/switch_to.h>
#include <asm/system_misc.h>
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __ro_after_init;
EXPORT_SYMBOL(__stack_chk_guard);
#endif
/*
* Function pointers to optional machine specific functions
*/
void (*pm_power_off)(void);
EXPORT_SYMBOL_GPL(pm_power_off);
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
cpu_die();
}
#endif
/*
* Called by kexec, immediately prior to machine_kexec().
*
* This must completely disable all secondary CPUs; simply causing those CPUs
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
* kexec'd kernel to use any and all RAM as it sees fit, without having to
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
*/
void machine_shutdown(void)
{
smp_shutdown_nonboot_cpus(reboot_cpu);
}
/*
* Halting simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this.
*/
void machine_halt(void)
{
local_irq_disable();
smp_send_stop();
while (1);
}
/*
* Power-off simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this. When the system power is turned off, it will take all CPUs
* with it.
*/
void machine_power_off(void)
{
local_irq_disable();
smp_send_stop();
do_kernel_power_off();
}
/*
* Restart requires that the secondary CPUs stop performing any activity
* while the primary CPU resets the system. Systems with multiple CPUs must
* provide a HW restart implementation, to ensure that all CPUs reset at once.
* This is required so that any code running after reset on the primary CPU
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
* executing pre-reset code, and using RAM that the primary CPU's code wishes
* to use. Implementing such co-ordination would be essentially impossible.
*/
void machine_restart(char *cmd)
{
/* Disable interrupts first */
local_irq_disable();
smp_send_stop();
/*
* UpdateCapsule() depends on the system being reset via
* ResetSystem().
*/
if (efi_enabled(EFI_RUNTIME_SERVICES))
efi_reboot(reboot_mode, NULL);
/* Now call the architecture specific reboot code. */
do_kernel_restart(cmd);
/*
* Whoops - the architecture was unable to reboot.
*/
printk("Reboot failed -- System halted\n");
while (1);
}
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
static const char *const btypes[] = {
bstr(NONE, "--"),
bstr( JC, "jc"),
bstr( C, "-c"),
bstr( J , "j-")
};
#undef bstr
static void print_pstate(struct pt_regs *regs)
{
u64 pstate = regs->pstate;
if (compat_user_mode(regs)) {
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
pstate,
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
pstate & PSR_AA32_F_BIT ? 'F' : 'f',
pstate & PSR_AA32_DIT_BIT ? '+' : '-',
pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
} else {
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
PSR_BTYPE_SHIFT];
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
pstate,
pstate & PSR_N_BIT ? 'N' : 'n',
pstate & PSR_Z_BIT ? 'Z' : 'z',
pstate & PSR_C_BIT ? 'C' : 'c',
pstate & PSR_V_BIT ? 'V' : 'v',
pstate & PSR_D_BIT ? 'D' : 'd',
pstate & PSR_A_BIT ? 'A' : 'a',
pstate & PSR_I_BIT ? 'I' : 'i',
pstate & PSR_F_BIT ? 'F' : 'f',
pstate & PSR_PAN_BIT ? '+' : '-',
pstate & PSR_UAO_BIT ? '+' : '-',
pstate & PSR_TCO_BIT ? '+' : '-',
pstate & PSR_DIT_BIT ? '+' : '-',
pstate & PSR_SSBS_BIT ? '+' : '-',
btype_str);
}
}
void __show_regs(struct pt_regs *regs)
{
int i, top_reg;
u64 lr, sp;
if (compat_user_mode(regs)) {
lr = regs->compat_lr;
sp = regs->compat_sp;
top_reg = 12;
} else {
lr = regs->regs[30];
sp = regs->sp;
top_reg = 29;
}
show_regs_print_info(KERN_DEFAULT);
print_pstate(regs);
if (!user_mode(regs)) {
printk("pc : %pS\n", (void *)regs->pc);
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
} else {
printk("pc : %016llx\n", regs->pc);
printk("lr : %016llx\n", lr);
}
printk("sp : %016llx\n", sp);
if (system_uses_irq_prio_masking())
printk("pmr_save: %08llx\n", regs->pmr_save);
i = top_reg;
while (i >= 0) {
printk("x%-2d: %016llx", i, regs->regs[i]);
while (i-- % 3)
pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
pr_cont("\n");
}
}
void show_regs(struct pt_regs *regs)
{
__show_regs(regs);
dump_backtrace(regs, NULL, KERN_DEFAULT);
}
static void tls_thread_flush(void)
{
write_sysreg(0, tpidr_el0);
if (system_supports_tpidr2())
write_sysreg_s(0, SYS_TPIDR2_EL0);
if (is_compat_task()) {
current->thread.uw.tp_value = 0;
/*
* We need to ensure ordering between the shadow state and the
* hardware state, so that we don't corrupt the hardware state
* with a stale shadow state during context switch.
*/
barrier();
write_sysreg(0, tpidrro_el0);
}
}
static void flush_tagged_addr_state(void)
{
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
clear_thread_flag(TIF_TAGGED_ADDR);
}
void flush_thread(void)
{
fpsimd_flush_thread();
tls_thread_flush();
flush_ptrace_hw_breakpoint(current);
flush_tagged_addr_state();
}
void arch_release_task_struct(struct task_struct *tsk)
{
fpsimd_release_task(tsk);
}
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
if (current->mm)
fpsimd_preserve_current_state();
*dst = *src;
/* We rely on the above assignment to initialize dst's thread_flags: */
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
/*
* Detach src's sve_state (if any) from dst so that it does not
* get erroneously used or freed prematurely. dst's copies
* will be allocated on demand later on if dst uses SVE.
* For consistency, also clear TIF_SVE here: this could be done
* later in copy_process(), but to avoid tripping up future
* maintainers it is best not to leave TIF flags and buffers in
* an inconsistent state, even temporarily.
*/
dst->thread.sve_state = NULL;
clear_tsk_thread_flag(dst, TIF_SVE);
/*
* In the unlikely event that we create a new thread with ZA
* enabled we should retain the ZA and ZT state so duplicate
* it here. This may be shortly freed if we exec() or if
* CLONE_SETTLS but it's simpler to do it here. To avoid
* confusing the rest of the code ensure that we have a
* sve_state allocated whenever sme_state is allocated.
*/
if (thread_za_enabled(&src->thread)) {
dst->thread.sve_state = kzalloc(sve_state_size(src),
GFP_KERNEL);
if (!dst->thread.sve_state)
return -ENOMEM;
dst->thread.sme_state = kmemdup(src->thread.sme_state,
sme_state_size(src),
GFP_KERNEL);
if (!dst->thread.sme_state) {
kfree(dst->thread.sve_state);
dst->thread.sve_state = NULL;
return -ENOMEM;
}
} else {
dst->thread.sme_state = NULL;
clear_tsk_thread_flag(dst, TIF_SME);
}
dst->thread.fp_type = FP_STATE_FPSIMD;
/* clear any pending asynchronous tag fault raised by the parent */
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
return 0;
}
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
{
unsigned long clone_flags = args->flags;
unsigned long stack_start = args->stack;
unsigned long tls = args->tls;
struct pt_regs *childregs = task_pt_regs(p);
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
/*
* In case p was allocated the same task_struct pointer as some
* other recently-exited task, make sure p is disassociated from
* any cpu that may have run that now-exited task recently.
* Otherwise we could erroneously skip reloading the FPSIMD
* registers for p.
*/
fpsimd_flush_task_state(p);
ptrauth_thread_init_kernel(p);
if (likely(!args->fn)) {
*childregs = *current_pt_regs();
childregs->regs[0] = 0;
/*
* Read the current TLS pointer from tpidr_el0 as it may be
* out-of-sync with the saved value.
*/
*task_user_tls(p) = read_sysreg(tpidr_el0);
if (system_supports_tpidr2())
p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
if (stack_start) {
if (is_compat_thread(task_thread_info(p)))
childregs->compat_sp = stack_start;
else
childregs->sp = stack_start;
}
/*
* If a TLS pointer was passed to clone, use it for the new
* thread. We also reset TPIDR2 if it's in use.
*/
if (clone_flags & CLONE_SETTLS) {
p->thread.uw.tp_value = tls;
p->thread.tpidr2_el0 = 0;
}
} else {
/*
* A kthread has no context to ERET to, so ensure any buggy
* ERET is treated as an illegal exception return.
*
* When a user task is created from a kthread, childregs will
* be initialized by start_thread() or start_compat_thread().
*/
memset(childregs, 0, sizeof(struct pt_regs));
childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
p->thread.cpu_context.x19 = (unsigned long)args->fn;
p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
}
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
p->thread.cpu_context.sp = (unsigned long)childregs;
/*
* For the benefit of the unwinder, set up childregs->stackframe
* as the final frame for the new task.
*/
p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
ptrace_hw_copy_thread(p);
return 0;
}
void tls_preserve_current_state(void)
{
*task_user_tls(current) = read_sysreg(tpidr_el0);
if (system_supports_tpidr2() && !is_compat_task())
current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
}
static void tls_thread_switch(struct task_struct *next)
{
tls_preserve_current_state();
if (is_compat_thread(task_thread_info(next)))
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
else if (!arm64_kernel_unmapped_at_el0())
write_sysreg(0, tpidrro_el0);
write_sysreg(*task_user_tls(next), tpidr_el0);
if (system_supports_tpidr2())
write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
}
/*
* Force SSBS state on context-switch, since it may be lost after migrating
* from a CPU which treats the bit as RES0 in a heterogeneous system.
*/
static void ssbs_thread_switch(struct task_struct *next)
{
/*
* Nothing to do for kernel threads, but 'regs' may be junk
* (e.g. idle task) so check the flags and bail early.
*/
if (unlikely(next->flags & PF_KTHREAD))
return;
/*
* If all CPUs implement the SSBS extension, then we just need to
* context-switch the PSTATE field.
*/
if (cpus_have_const_cap(ARM64_SSBS))
return;
spectre_v4_enable_task_mitigation(next);
}
/*
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
* shadow copy so that we can restore this upon entry from userspace.
*
* This is *only* for exception entry from EL0, and is not valid until we
* __switch_to() a user task.
*/
DEFINE_PER_CPU(struct task_struct *, __entry_task);
static void entry_task_switch(struct task_struct *next)
{
__this_cpu_write(__entry_task, next);
}
/*
* ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
* Ensure access is disabled when switching to a 32bit task, ensure
* access is enabled when switching to a 64bit task.
*/
static void erratum_1418040_thread_switch(struct task_struct *next)
{
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
!this_cpu_has_cap(ARM64_WORKAROUND_1418040))
return;
if (is_compat_thread(task_thread_info(next)))
sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
else
sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
}
static void erratum_1418040_new_exec(void)
{
preempt_disable();
erratum_1418040_thread_switch(current);
preempt_enable();
}
/*
* __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
* this function must be called with preemption disabled and the update to
* sctlr_user must be made in the same preemption disabled block so that
* __switch_to() does not see the variable update before the SCTLR_EL1 one.
*/
void update_sctlr_el1(u64 sctlr)
{
/*
* EnIA must not be cleared while in the kernel as this is necessary for
* in-kernel PAC. It will be cleared on kernel exit if needed.
*/
sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
/* ISB required for the kernel uaccess routines when setting TCF0. */
isb();
}
/*
* Thread switching.
*/
__notrace_funcgraph __sched
struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *next)
{
struct task_struct *last;
fpsimd_thread_switch(next);
tls_thread_switch(next);
hw_breakpoint_thread_switch(next);
contextidr_thread_switch(next);
entry_task_switch(next);
ssbs_thread_switch(next);
erratum_1418040_thread_switch(next);
ptrauth_thread_switch_user(next);
/*
* Complete any pending TLB or cache maintenance on this CPU in case
* the thread migrates to a different CPU.
* This full barrier is also required by the membarrier system
* call.
*/
dsb(ish);
/*
* MTE thread switching must happen after the DSB above to ensure that
* any asynchronous tag check faults have been logged in the TFSR*_EL1
* registers.
*/
mte_thread_switch(next);
/* avoid expensive SCTLR_EL1 accesses if no change */
if (prev->thread.sctlr_user != next->thread.sctlr_user)
update_sctlr_el1(next->thread.sctlr_user);
/* the actual thread switch */
last = cpu_switch_to(prev, next);
return last;
}
struct wchan_info {
unsigned long pc;
int count;
};
static bool get_wchan_cb(void *arg, unsigned long pc)
{
struct wchan_info *wchan_info = arg;
if (!in_sched_functions(pc)) {
wchan_info->pc = pc;
return false;
}
return wchan_info->count++ < 16;
}
unsigned long __get_wchan(struct task_struct *p)
{
struct wchan_info wchan_info = {
.pc = 0,
.count = 0,
};
if (!try_get_task_stack(p))
return 0;
arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
put_task_stack(p);
return wchan_info.pc;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_u32_below(PAGE_SIZE);
return sp & ~0xf;
}
#ifdef CONFIG_COMPAT
int compat_elf_check_arch(const struct elf32_hdr *hdr)
{
if (!system_supports_32bit_el0())
return false;
if ((hdr)->e_machine != EM_ARM)
return false;
if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
return false;
/*
* Prevent execve() of a 32-bit program from a deadline task
* if the restricted affinity mask would be inadmissible on an
* asymmetric system.
*/
return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
!dl_task_check_affinity(current, system_32bit_el0_cpumask());
}
#endif
/*
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
*/
void arch_setup_new_exec(void)
{
unsigned long mmflags = 0;
if (is_compat_task()) {
mmflags = MMCF_AARCH32;
/*
* Restrict the CPU affinity mask for a 32-bit task so that
* it contains only 32-bit-capable CPUs.
*
* From the perspective of the task, this looks similar to
* what would happen if the 64-bit-only CPUs were hot-unplugged
* at the point of execve(), although we try a bit harder to
* honour the cpuset hierarchy.
*/
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
force_compatible_cpus_allowed_ptr(current);
} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
relax_compatible_cpus_allowed_ptr(current);
}
current->mm->context.flags = mmflags;
ptrauth_thread_init_user();
mte_thread_init_user();
erratum_1418040_new_exec();
if (task_spec_ssb_noexec(current)) {
arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
PR_SPEC_ENABLE);
}
}
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
/*
* Control the relaxed ABI allowing tagged user addresses into the kernel.
*/
static unsigned int tagged_addr_disabled;
long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
{
unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
struct thread_info *ti = task_thread_info(task);
if (is_compat_thread(ti))
return -EINVAL;
if (system_supports_mte())
valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
| PR_MTE_TAG_MASK;
if (arg & ~valid_mask)
return -EINVAL;
/*
* Do not allow the enabling of the tagged address ABI if globally
* disabled via sysctl abi.tagged_addr_disabled.
*/
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
return -EINVAL;
if (set_mte_ctrl(task, arg) != 0)
return -EINVAL;
update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
return 0;
}
long get_tagged_addr_ctrl(struct task_struct *task)
{
long ret = 0;
struct thread_info *ti = task_thread_info(task);
if (is_compat_thread(ti))
return -EINVAL;
if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
ret = PR_TAGGED_ADDR_ENABLE;
ret |= get_mte_ctrl(task);
return ret;
}
/*
* Global sysctl to disable the tagged user addresses support. This control
* only prevents the tagged address ABI enabling via prctl() and does not
* disable it for tasks that already opted in to the relaxed ABI.
*/
static struct ctl_table tagged_addr_sysctl_table[] = {
{
.procname = "tagged_addr_disabled",
.mode = 0644,
.data = &tagged_addr_disabled,
.maxlen = sizeof(int),
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{ }
};
static int __init tagged_addr_init(void)
{
if (!register_sysctl("abi", tagged_addr_sysctl_table))
return -EINVAL;
return 0;
}
core_initcall(tagged_addr_init);
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
#ifdef CONFIG_BINFMT_ELF
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
bool has_interp, bool is_interp)
{
/*
* For dynamically linked executables the interpreter is
* responsible for setting PROT_BTI on everything except
* itself.
*/
if (is_interp != has_interp)
return prot;
if (!(state->flags & ARM64_ELF_BTI))
return prot;
if (prot & PROT_EXEC)
prot |= PROT_BTI;
return prot;
}
#endif