linux-zen-server/drivers/crypto/cavium/nitrox/nitrox_hal.c

680 lines
17 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/delay.h>
#include "nitrox_dev.h"
#include "nitrox_csr.h"
#include "nitrox_hal.h"
#define PLL_REF_CLK 50
#define MAX_CSR_RETRIES 10
/**
* emu_enable_cores - Enable EMU cluster cores.
* @ndev: NITROX device
*/
static void emu_enable_cores(struct nitrox_device *ndev)
{
union emu_se_enable emu_se;
union emu_ae_enable emu_ae;
int i;
/* AE cores 20 per cluster */
emu_ae.value = 0;
emu_ae.s.enable = 0xfffff;
/* SE cores 16 per cluster */
emu_se.value = 0;
emu_se.s.enable = 0xffff;
/* enable per cluster cores */
for (i = 0; i < NR_CLUSTERS; i++) {
nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value);
nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value);
}
}
/**
* nitrox_config_emu_unit - configure EMU unit.
* @ndev: NITROX device
*/
void nitrox_config_emu_unit(struct nitrox_device *ndev)
{
union emu_wd_int_ena_w1s emu_wd_int;
union emu_ge_int_ena_w1s emu_ge_int;
u64 offset;
int i;
/* enable cores */
emu_enable_cores(ndev);
/* enable general error and watch dog interrupts */
emu_ge_int.value = 0;
emu_ge_int.s.se_ge = 0xffff;
emu_ge_int.s.ae_ge = 0xfffff;
emu_wd_int.value = 0;
emu_wd_int.s.se_wd = 1;
for (i = 0; i < NR_CLUSTERS; i++) {
offset = EMU_WD_INT_ENA_W1SX(i);
nitrox_write_csr(ndev, offset, emu_wd_int.value);
offset = EMU_GE_INT_ENA_W1SX(i);
nitrox_write_csr(ndev, offset, emu_ge_int.value);
}
}
static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring)
{
union nps_pkt_in_instr_ctl pkt_in_ctl;
union nps_pkt_in_done_cnts pkt_in_cnts;
int max_retries = MAX_CSR_RETRIES;
u64 offset;
/* step 1: disable the ring, clear enable bit */
offset = NPS_PKT_IN_INSTR_CTLX(ring);
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
pkt_in_ctl.s.enb = 0;
nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
/* step 2: wait to clear [ENB] */
usleep_range(100, 150);
do {
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
if (!pkt_in_ctl.s.enb)
break;
udelay(50);
} while (max_retries--);
/* step 3: clear done counts */
offset = NPS_PKT_IN_DONE_CNTSX(ring);
pkt_in_cnts.value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, pkt_in_cnts.value);
usleep_range(50, 100);
}
void enable_pkt_input_ring(struct nitrox_device *ndev, int ring)
{
union nps_pkt_in_instr_ctl pkt_in_ctl;
int max_retries = MAX_CSR_RETRIES;
u64 offset;
/* 64-byte instruction size */
offset = NPS_PKT_IN_INSTR_CTLX(ring);
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
pkt_in_ctl.s.is64b = 1;
pkt_in_ctl.s.enb = 1;
nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
/* wait for set [ENB] */
do {
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
if (pkt_in_ctl.s.enb)
break;
udelay(50);
} while (max_retries--);
}
/**
* nitrox_config_pkt_input_rings - configure Packet Input Rings
* @ndev: NITROX device
*/
void nitrox_config_pkt_input_rings(struct nitrox_device *ndev)
{
int i;
for (i = 0; i < ndev->nr_queues; i++) {
struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i];
union nps_pkt_in_instr_rsize pkt_in_rsize;
union nps_pkt_in_instr_baoff_dbell pkt_in_dbell;
u64 offset;
reset_pkt_input_ring(ndev, i);
/**
* step 4:
* configure ring base address 16-byte aligned,
* size and interrupt threshold.
*/
offset = NPS_PKT_IN_INSTR_BADDRX(i);
nitrox_write_csr(ndev, offset, cmdq->dma);
/* configure ring size */
offset = NPS_PKT_IN_INSTR_RSIZEX(i);
pkt_in_rsize.value = 0;
pkt_in_rsize.s.rsize = ndev->qlen;
nitrox_write_csr(ndev, offset, pkt_in_rsize.value);
/* set high threshold for pkt input ring interrupts */
offset = NPS_PKT_IN_INT_LEVELSX(i);
nitrox_write_csr(ndev, offset, 0xffffffff);
/* step 5: clear off door bell counts */
offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(i);
pkt_in_dbell.value = 0;
pkt_in_dbell.s.dbell = 0xffffffff;
nitrox_write_csr(ndev, offset, pkt_in_dbell.value);
/* enable the ring */
enable_pkt_input_ring(ndev, i);
}
}
static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port)
{
union nps_pkt_slc_ctl pkt_slc_ctl;
union nps_pkt_slc_cnts pkt_slc_cnts;
int max_retries = MAX_CSR_RETRIES;
u64 offset;
/* step 1: disable slc port */
offset = NPS_PKT_SLC_CTLX(port);
pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
pkt_slc_ctl.s.enb = 0;
nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
/* step 2 */
usleep_range(100, 150);
/* wait to clear [ENB] */
do {
pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
if (!pkt_slc_ctl.s.enb)
break;
udelay(50);
} while (max_retries--);
/* step 3: clear slc counters */
offset = NPS_PKT_SLC_CNTSX(port);
pkt_slc_cnts.value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, pkt_slc_cnts.value);
usleep_range(50, 100);
}
void enable_pkt_solicit_port(struct nitrox_device *ndev, int port)
{
union nps_pkt_slc_ctl pkt_slc_ctl;
int max_retries = MAX_CSR_RETRIES;
u64 offset;
offset = NPS_PKT_SLC_CTLX(port);
pkt_slc_ctl.value = 0;
pkt_slc_ctl.s.enb = 1;
/*
* 8 trailing 0x00 bytes will be added
* to the end of the outgoing packet.
*/
pkt_slc_ctl.s.z = 1;
/* enable response header */
pkt_slc_ctl.s.rh = 1;
nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
/* wait to set [ENB] */
do {
pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
if (pkt_slc_ctl.s.enb)
break;
udelay(50);
} while (max_retries--);
}
static void config_pkt_solicit_port(struct nitrox_device *ndev, int port)
{
union nps_pkt_slc_int_levels pkt_slc_int;
u64 offset;
reset_pkt_solicit_port(ndev, port);
/* step 4: configure interrupt levels */
offset = NPS_PKT_SLC_INT_LEVELSX(port);
pkt_slc_int.value = 0;
/* time interrupt threshold */
pkt_slc_int.s.timet = 0x3fffff;
nitrox_write_csr(ndev, offset, pkt_slc_int.value);
/* enable the solicit port */
enable_pkt_solicit_port(ndev, port);
}
void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev)
{
int i;
for (i = 0; i < ndev->nr_queues; i++)
config_pkt_solicit_port(ndev, i);
}
/**
* enable_nps_core_interrupts - enable NPS core interrutps
* @ndev: NITROX device.
*
* This includes NPS core interrupts.
*/
static void enable_nps_core_interrupts(struct nitrox_device *ndev)
{
union nps_core_int_ena_w1s core_int;
/* NPS core interrutps */
core_int.value = 0;
core_int.s.host_wr_err = 1;
core_int.s.host_wr_timeout = 1;
core_int.s.exec_wr_timeout = 1;
core_int.s.npco_dma_malform = 1;
core_int.s.host_nps_wr_err = 1;
nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value);
}
void nitrox_config_nps_core_unit(struct nitrox_device *ndev)
{
union nps_core_gbl_vfcfg core_gbl_vfcfg;
/* endian control information */
nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL);
/* disable ILK interface */
core_gbl_vfcfg.value = 0;
core_gbl_vfcfg.s.ilk_disable = 1;
core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF;
nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value);
/* enable nps core interrupts */
enable_nps_core_interrupts(ndev);
}
/**
* enable_nps_pkt_interrupts - enable NPS packet interrutps
* @ndev: NITROX device.
*
* This includes NPS packet in and slc interrupts.
*/
static void enable_nps_pkt_interrupts(struct nitrox_device *ndev)
{
/* NPS packet in ring interrupts */
nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL));
/* NPS packet slc port interrupts */
nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL));
}
void nitrox_config_nps_pkt_unit(struct nitrox_device *ndev)
{
/* config input and solicit ports */
nitrox_config_pkt_input_rings(ndev);
nitrox_config_pkt_solicit_ports(ndev);
/* enable nps packet interrupts */
enable_nps_pkt_interrupts(ndev);
}
static void reset_aqm_ring(struct nitrox_device *ndev, int ring)
{
union aqmq_en aqmq_en_reg;
union aqmq_activity_stat activity_stat;
union aqmq_cmp_cnt cmp_cnt;
int max_retries = MAX_CSR_RETRIES;
u64 offset;
/* step 1: disable the queue */
offset = AQMQ_ENX(ring);
aqmq_en_reg.value = 0;
aqmq_en_reg.queue_enable = 0;
nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
/* step 2: wait for AQMQ_ACTIVITY_STATX[QUEUE_ACTIVE] to clear */
usleep_range(100, 150);
offset = AQMQ_ACTIVITY_STATX(ring);
do {
activity_stat.value = nitrox_read_csr(ndev, offset);
if (!activity_stat.queue_active)
break;
udelay(50);
} while (max_retries--);
/* step 3: clear commands completed count */
offset = AQMQ_CMP_CNTX(ring);
cmp_cnt.value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, cmp_cnt.value);
usleep_range(50, 100);
}
void enable_aqm_ring(struct nitrox_device *ndev, int ring)
{
union aqmq_en aqmq_en_reg;
u64 offset;
offset = AQMQ_ENX(ring);
aqmq_en_reg.value = 0;
aqmq_en_reg.queue_enable = 1;
nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
usleep_range(50, 100);
}
void nitrox_config_aqm_rings(struct nitrox_device *ndev)
{
int ring;
for (ring = 0; ring < ndev->nr_queues; ring++) {
struct nitrox_cmdq *cmdq = ndev->aqmq[ring];
union aqmq_drbl drbl;
union aqmq_qsz qsize;
union aqmq_cmp_thr cmp_thr;
u64 offset;
/* steps 1 - 3 */
reset_aqm_ring(ndev, ring);
/* step 4: clear doorbell count of ring */
offset = AQMQ_DRBLX(ring);
drbl.value = 0;
drbl.dbell_count = 0xFFFFFFFF;
nitrox_write_csr(ndev, offset, drbl.value);
/* step 5: configure host ring details */
/* set host address for next command of ring */
offset = AQMQ_NXT_CMDX(ring);
nitrox_write_csr(ndev, offset, 0ULL);
/* set host address of ring base */
offset = AQMQ_BADRX(ring);
nitrox_write_csr(ndev, offset, cmdq->dma);
/* set ring size */
offset = AQMQ_QSZX(ring);
qsize.value = 0;
qsize.host_queue_size = ndev->qlen;
nitrox_write_csr(ndev, offset, qsize.value);
/* set command completion threshold */
offset = AQMQ_CMP_THRX(ring);
cmp_thr.value = 0;
cmp_thr.commands_completed_threshold = 1;
nitrox_write_csr(ndev, offset, cmp_thr.value);
/* step 6: enable the queue */
enable_aqm_ring(ndev, ring);
}
}
static void enable_aqm_interrupts(struct nitrox_device *ndev)
{
/* clear interrupt enable bits */
nitrox_write_csr(ndev, AQM_DBELL_OVF_LO_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, AQM_DBELL_OVF_HI_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, AQM_DMA_RD_ERR_LO_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, AQM_DMA_RD_ERR_HI_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, AQM_EXEC_NA_LO_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, AQM_EXEC_NA_HI_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, AQM_EXEC_ERR_LO_ENA_W1S, (~0ULL));
nitrox_write_csr(ndev, AQM_EXEC_ERR_HI_ENA_W1S, (~0ULL));
}
void nitrox_config_aqm_unit(struct nitrox_device *ndev)
{
/* config aqm command queues */
nitrox_config_aqm_rings(ndev);
/* enable aqm interrupts */
enable_aqm_interrupts(ndev);
}
void nitrox_config_pom_unit(struct nitrox_device *ndev)
{
union pom_int_ena_w1s pom_int;
int i;
/* enable pom interrupts */
pom_int.value = 0;
pom_int.s.illegal_dport = 1;
nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value);
/* enable perf counters */
for (i = 0; i < ndev->hw.se_cores; i++)
nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i));
}
/**
* nitrox_config_rand_unit - enable NITROX random number unit
* @ndev: NITROX device
*/
void nitrox_config_rand_unit(struct nitrox_device *ndev)
{
union efl_rnm_ctl_status efl_rnm_ctl;
u64 offset;
offset = EFL_RNM_CTL_STATUS;
efl_rnm_ctl.value = nitrox_read_csr(ndev, offset);
efl_rnm_ctl.s.ent_en = 1;
efl_rnm_ctl.s.rng_en = 1;
nitrox_write_csr(ndev, offset, efl_rnm_ctl.value);
}
void nitrox_config_efl_unit(struct nitrox_device *ndev)
{
int i;
for (i = 0; i < NR_CLUSTERS; i++) {
union efl_core_int_ena_w1s efl_core_int;
u64 offset;
/* EFL core interrupts */
offset = EFL_CORE_INT_ENA_W1SX(i);
efl_core_int.value = 0;
efl_core_int.s.len_ovr = 1;
efl_core_int.s.d_left = 1;
efl_core_int.s.epci_decode_err = 1;
nitrox_write_csr(ndev, offset, efl_core_int.value);
offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i);
nitrox_write_csr(ndev, offset, (~0ULL));
offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i);
nitrox_write_csr(ndev, offset, (~0ULL));
}
}
void nitrox_config_bmi_unit(struct nitrox_device *ndev)
{
union bmi_ctl bmi_ctl;
union bmi_int_ena_w1s bmi_int_ena;
u64 offset;
/* no threshold limits for PCIe */
offset = BMI_CTL;
bmi_ctl.value = nitrox_read_csr(ndev, offset);
bmi_ctl.s.max_pkt_len = 0xff;
bmi_ctl.s.nps_free_thrsh = 0xff;
bmi_ctl.s.nps_hdrq_thrsh = 0x7a;
nitrox_write_csr(ndev, offset, bmi_ctl.value);
/* enable interrupts */
offset = BMI_INT_ENA_W1S;
bmi_int_ena.value = 0;
bmi_int_ena.s.max_len_err_nps = 1;
bmi_int_ena.s.pkt_rcv_err_nps = 1;
bmi_int_ena.s.fpf_undrrn = 1;
nitrox_write_csr(ndev, offset, bmi_int_ena.value);
}
void nitrox_config_bmo_unit(struct nitrox_device *ndev)
{
union bmo_ctl2 bmo_ctl2;
u64 offset;
/* no threshold limits for PCIe */
offset = BMO_CTL2;
bmo_ctl2.value = nitrox_read_csr(ndev, offset);
bmo_ctl2.s.nps_slc_buf_thrsh = 0xff;
nitrox_write_csr(ndev, offset, bmo_ctl2.value);
}
void invalidate_lbc(struct nitrox_device *ndev)
{
union lbc_inval_ctl lbc_ctl;
union lbc_inval_status lbc_stat;
int max_retries = MAX_CSR_RETRIES;
u64 offset;
/* invalidate LBC */
offset = LBC_INVAL_CTL;
lbc_ctl.value = nitrox_read_csr(ndev, offset);
lbc_ctl.s.cam_inval_start = 1;
nitrox_write_csr(ndev, offset, lbc_ctl.value);
offset = LBC_INVAL_STATUS;
do {
lbc_stat.value = nitrox_read_csr(ndev, offset);
if (lbc_stat.s.done)
break;
udelay(50);
} while (max_retries--);
}
void nitrox_config_lbc_unit(struct nitrox_device *ndev)
{
union lbc_int_ena_w1s lbc_int_ena;
u64 offset;
invalidate_lbc(ndev);
/* enable interrupts */
offset = LBC_INT_ENA_W1S;
lbc_int_ena.value = 0;
lbc_int_ena.s.dma_rd_err = 1;
lbc_int_ena.s.over_fetch_err = 1;
lbc_int_ena.s.cam_inval_abort = 1;
lbc_int_ena.s.cam_hard_err = 1;
nitrox_write_csr(ndev, offset, lbc_int_ena.value);
offset = LBC_PLM_VF1_64_INT_ENA_W1S;
nitrox_write_csr(ndev, offset, (~0ULL));
offset = LBC_PLM_VF65_128_INT_ENA_W1S;
nitrox_write_csr(ndev, offset, (~0ULL));
offset = LBC_ELM_VF1_64_INT_ENA_W1S;
nitrox_write_csr(ndev, offset, (~0ULL));
offset = LBC_ELM_VF65_128_INT_ENA_W1S;
nitrox_write_csr(ndev, offset, (~0ULL));
}
void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode)
{
union nps_core_gbl_vfcfg vfcfg;
vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG);
vfcfg.s.cfg = mode & 0x7;
nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value);
}
static const char *get_core_option(u8 se_cores, u8 ae_cores)
{
const char *option = "";
if (ae_cores == AE_MAX_CORES) {
switch (se_cores) {
case SE_MAX_CORES:
option = "60";
break;
case 40:
option = "60s";
break;
}
} else if (ae_cores == (AE_MAX_CORES / 2)) {
option = "30";
} else {
option = "60i";
}
return option;
}
static const char *get_feature_option(u8 zip_cores, int core_freq)
{
if (zip_cores == 0)
return "";
else if (zip_cores < ZIP_MAX_CORES)
return "-C15";
if (core_freq >= 850)
return "-C45";
else if (core_freq >= 750)
return "-C35";
else if (core_freq >= 550)
return "-C25";
return "";
}
void nitrox_get_hwinfo(struct nitrox_device *ndev)
{
union emu_fuse_map emu_fuse;
union rst_boot rst_boot;
union fus_dat1 fus_dat1;
unsigned char name[IFNAMSIZ * 2] = {};
int i, dead_cores;
u64 offset;
/* get core frequency */
offset = RST_BOOT;
rst_boot.value = nitrox_read_csr(ndev, offset);
ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK;
for (i = 0; i < NR_CLUSTERS; i++) {
offset = EMU_FUSE_MAPX(i);
emu_fuse.value = nitrox_read_csr(ndev, offset);
if (emu_fuse.s.valid) {
dead_cores = hweight32(emu_fuse.s.ae_fuse);
ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores;
dead_cores = hweight16(emu_fuse.s.se_fuse);
ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores;
}
}
/* find zip hardware availability */
offset = FUS_DAT1;
fus_dat1.value = nitrox_read_csr(ndev, offset);
if (!fus_dat1.nozip) {
dead_cores = hweight8(fus_dat1.zip_info);
ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores;
}
/* determine the partname
* CNN55<core option>-<freq><pincount>-<feature option>-<rev>
*/
snprintf(name, sizeof(name), "CNN55%s-%3dBG676%s-1.%u",
get_core_option(ndev->hw.se_cores, ndev->hw.ae_cores),
ndev->hw.freq,
get_feature_option(ndev->hw.zip_cores, ndev->hw.freq),
ndev->hw.revision_id);
/* copy partname */
strncpy(ndev->hw.partname, name, sizeof(ndev->hw.partname));
}
void enable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
{
u64 value = ~0ULL;
u64 reg_addr;
/* Mailbox interrupt low enable set register */
reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1S;
nitrox_write_csr(ndev, reg_addr, value);
/* Mailbox interrupt high enable set register */
reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1S;
nitrox_write_csr(ndev, reg_addr, value);
}
void disable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
{
u64 value = ~0ULL;
u64 reg_addr;
/* Mailbox interrupt low enable clear register */
reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1C;
nitrox_write_csr(ndev, reg_addr, value);
/* Mailbox interrupt high enable clear register */
reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1C;
nitrox_write_csr(ndev, reg_addr, value);
}